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Abstract. We present an adaptive algorithm for blind audio source sep-
aration (BASS) of moving sources via Independent Component Analysis
(ICA) in time-domain. The method is shown to achieve good separation
quality even with a short demixing filter length (L = 30). Our experi-
ments show that the proposed adaptive algorithm can outperform the
off-line version of the method (in terms of the average output SIR), even
in the case in which the sources do not move, because it is capable of
better adaptation to the nonstationarity of the speech.

1 Introduction

The task considered in this paper is the blind separation of d unknown audio
sources (BASS) from m recordings, where the unknown mixing process is convo-
lutive and potentially dynamic, e.g., due to moving sources. It is assumed that
the system changes slowly and may be considered being static in short time
intervals. Therefore, within interval of the length P , the classical convolutive
mixing problem is considered, which is described by

xi(n) =
d∑

j=1

Mij∑

τ=0

hij(τ)sj(n − τ), i = 1, . . . , m. (1)

Here, x1(n), . . . , xm(n) are the observed signals on microphones, s1(n), . . . , sd(n)
are the unknown source signals, and hij are unknown impulse responses of length
Mij . The original sources are assumed to be independent, which allows the basis
of the separation to be the Independent Component Analysis (ICA) [1]. For sim-
plicity, we will assume that the number of sources d remains the same throughout
the whole recording.

The separation of dynamic mixtures is usually done with block-by-block ap-
plication of a method intended for stationary mixtures. The method may be
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modified more or less to respect the continuity of the (de)mixing process, and
the outputting signals are synthesized from the separated signals on blocks. We
call such methods on-line.

An on-line method applying ICA in the frequency domain was proposed by
Mukai et al in [2]. An on-line method working in time-domain based on second-
order statistics cost function was proposed by Buchner et al in [3]. Sparseness
based on-line algorithm working in frequency domain was presented by Loesch
and Yang in [4].

In this paper, we propose an online algorithm that comes from the BASS
method from [5]. This original method applies an ICA algorithm to the mixed
signals in time-domain to obtain independent components that correspond to
randomly filtered versions of the original signals. The components are then
grouped into clusters so that components in a cluster correspond to the same
source. Finally, components of a cluster are used to reconstruct separated re-
sponses (spatial images) of the corresponding source on microphones. In the
proposed on-line method, this process is modified so that the ICA and clus-
tering algorithms adapt their internal parameters by performing one iteration
in each block only. A new clustering criterion for the similarity of components,
which is computationally more effective than the one in [6], is proposed. The
speed of adaptivity can be driven by learning parameters and could be made
very fast, due to fast convergence of ICA that is based on BGSEP from [7].

The following Section 2 describes all necessary details of the proposed on-line
method. Section 3 demonstrates its performance in experiments with real-world
recordings and Section 4 concludes the paper.

2 The Proposed Algorithm

The input signals are divided into overlapping blocks of length P , with the shift
of T samples such that R = P/T is an integer. The length of overlap of two
consecutive blocks is thus P − T . The Ith block of the jth input signal will be
denoted by

xI
j (n) = xj((I − 1) · T + n), n = 1, . . . , T. (2)

The uppercase superscript I will be used to denote data and quantities related
to the Ith block. A separation procedure described below is successively applied
to blocks of input signals and outputs blocks of separated microphone responses
(spatial images) of the source signals.

Like the off-line method, the on-line procedure forms delayed copies of the
microphone signals, (I) applies a simplified BGSEP algorithm to decompose
the data matrix into its independent components and (II) uses a special fuzzy
clustering method to group the independent components to form independent
subspaces that represent the separated sources. The third step (III) consists
in the reconstruction of the separated signals in each block and averaging the
signals in the overlapping windows.
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2.1 Step I: ICA (Simplified BGSEP Algorithm)

Let XI be the data matrix from the Ith block of input signals defined as

XI =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

xI
1(1) xI

1(2) . . . . . . xI
1(P )

xI
1(2) xI

1(3) . . . . . . xI
1(P + 1)

...
...

...
...

...
xI

1(L) xI
1(L + 1) . . . . . . xI

1(P + L)
xI

2(1) xI
2(2) . . . . . . xI

2(P )
...

...
...

...
...

...
...

...
...

...
xI

m(L) xI
m(L + 1) . . . . . . xI

m(P + L)

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (3)

where L is a free parameter corresponding to the length of the demixing MIMO
filter.

The goal of the step is to find a demixing matrix WI so that rows of
CI = WIXI are as independent as possible, thus, correspond to “independent"
components (ICs) of XI .

The matrix XI can be partitioned in a vertical way in M blocks of equal size,
(mL) × (P/M),

XI = [XI,1, . . . ,XI,M ]. (4)

The simplified BGSEP algorithm estimates WI by a joint approximate diago-
nalization of a set of the covariance matrices

RI,k =
M

P
XI,k(XI,k)T , k = 1, . . . , M. (5)

For convenience and computation savings we assume that the number of the
matrices M is equal to the parameter R that appears in the division of the
signal to overlapping blocks. Then, in the transition {RI−1,k}M

k=1 → {RI,k}M
k=1,

the set of matrices remains unchanged, except for the removed matrix RI−1,1

and the added matrix RI,M .
The diagonalization proceeds by performing one iteration of the WEDGE al-

gorithm - Weighted Exhaustive Diagonalization with Gauss itErations [7], with
the weight matrices that are diagonal, optimized for the case when the signals
obey the piecewise stationary model. The algorithm uses the estimate of demix-
ing matrix from the previous segment WI−1 to partially diagonalize the matrices
in (5)

PI,k = WI−1RI,k(WI−1)T k = 1, . . . , M. (6)

As in [7], the demixing matrix WI is obtained by updating WI−1 as

WI = (AI)−1WI−1 (7)

where AI has ones on its main diagonal, and the off-diagonal elements are ob-
tained by solving the 2 × 2 systems

[
AI

kl

AI
lk

]
= βI

[
rT

llZklrll rT
kkZklrll

rT
kkZklrll rT

kkZklr̃kk

]−1 [
rT

llZklrkl

rT
kkZklrkl

]
, (8)
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with
rkl = [(PI,1)kl, . . . , (PI,M )kl]T , (9)

and
Zkl = diag

(
1

(PI,1)kk(PI,1)ll
, . . . ,

1
(PI,M )kk(PI,M )ll

)
(10)

for k, l = 1, . . . , mL, k > l. The variable βI in (8) does not exist in the orig-
inal WEDGE algorithm: it is added here to control the speed of algorithm’s
convergence. The choice of βI will be discussed later in Section 2.4.

2.2 Step II: Clustering of Independent Components

Similarity of ICs. Due to the indeterminacy of ICA, the ICs of XI are arbitrar-
ily filtered versions of the original signals. To recognize whether two components
correspond to the same source, we compute their generalized cross-correlation
coefficients known as GCC-PHAT [8]. The coefficients are invariant to the mag-
nitude spectra of the signals and depend on their phase spectra only, which
makes them appropriate for the similarity evaluation.

Let CI
i (k) and CI

j (k) denote the Fourier transform of the ith and jth com-
ponent, respectively, i, j = 1, . . . , mL, and k denotes the frequency index. The
GCC-PHAT coefficients of the components, denoted by gI

ij(n), are equal to the
inverse Fourier transform of

GI
ij(k) =

CI
i (k) · CI

j (k)∗

|CI
i (k)| · |CI

j (k)| , (11)

where ∗ denotes the complex conjugation. Fast computation of gI
ij(n) can be

done by means of the FFT.
If the components correspond exactly to the same source, i.e. without any

residual interference, gI
ij(n) is equal to delayed unit impulse function, where

the delay cannot be greater than L. Hence, the similarity between the ith and
jth component can be measured by

∑L
n=−L

∣∣gI
ij(n)

∣∣ and the matrix of mutual
similarity DI can be computed according to

DI
ij =

L∑

n=−L

∣∣gI
ij(n)

∣∣ + β2 · DI−1
ij , i, j = 1, . . . , mL, i �= j, (12)

where β2 is a learning parameter, 0 ≤ β2 ≤ 1. The diagonal elements of DI have
no importance for the clustering and are all set to 1.

Clustering Algorithm. For simplicity, we assume that the number of sources
d is known and does not change in time. The goal is thus to find d clusters of
components according to their mutual similarity given by DI . We propose to
use the Relational Fuzzy C-Means algorithm (RFCM) from [9], which allows
tracking of continual changes of the clusters.
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The affiliation of a component to a cluster is expressed by a value from [0, 1]
where 0 means that the component does not belong to the cluster and vice versa.
Let ΛI

kj be the kjth element of a d×mL partition matrix ΛI and represents the
affiliation of the jth component to the kth cluster. By definition it holds that∑d

k=0 ΛI
kj = 1.

Now, let B denotes the dissimilarity matrix whose elements are BI
ij = 1/DI

ij

for i �= j and BI
ii = 0. Let μI,f

k be a mL × 1 vector defined as μI,f
k =

[(ΛI
k1)

f , . . . , (ΛI
k(mL))

f ]T /
∑mL

j=1(Λ
I
kj)

f called the prototype of the kth cluster
associated with a “fuzzyfication" parameter f , f > 1. (We use the experimen-
tally verified value f = 1.5). The transition of ΛI−1 to ΛI is given as one
iteration of RFCM as

ΛI
kj =

( d∑

i=1

(Vkj/Vij)1/(f−1)
)−1

, (13)

where
Vkj =

(
BIμ

(I−1),f
k

)
j
− 1

2
(
μ

(I−1),f
k

)T
BI μ

(I−1),f
k (14)

is the distance of the jth component to the prototype μI,f
k (for details see [9]).

2.3 Step III: Reconstruction

The contribution of ICs of the kth cluster to XI is given by matrix

ŜI
k = (WI)−1diag

[
(ΛI

k1)
α, . . . , (ΛI

k,mL)α
]
CI , (15)

where α is an adjustable positive parameter. This matrix has analogous struc-
ture as XI in (3). In the ideal case the rows of ŜI

k contain delayed microphone
responses of the kth estimated source only. The response of the kth source at
the ith microphone is therefore estimated by summing these rows as

ŝi,I
k (n) =

1
L

L∑

q=1

(
ŜI

k

)
(i−1)L+q,n+q−1

, (16)

where
(
ŜI

k

)
α,β

is the αβth element of the matrix ŜI
k.

Finally, the overall outputs of the on-line algorithm are synthesized by putting
together the estimated blocks of separated signals. The overlapping parts are
averaged using a windowing function, for example, the Hann window.

2.4 Implementation Details

The speed of convergence of the ICA can be driven through the parameter βI in
(8). We found it helpful to increase the speed when the clusters of ICs did not
seem well separated in the previous block of data. Otherwise, βI can be close to
zero to maintain the continuity. Therefore, we take

βI = (1 − γI−1)/2. (17)
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γI is the Silhouette index [10] of the hard clustering which is derived from
the fuzzy clustering. Let Kk be the set of indices of the components for which
ΛI

kj = max� ΛI
�j (the kth cluster is the closest one to them). The Silhouette

index is defined through γI = 1
mL

∑mL
i=1 γI

i , where

γI
i =

minj /∈Kk
(BI

ij) − 1
|Kk−1|

∑
j∈Kk,i�=j BI

ij

max{minj /∈Kk
(BI

ij),
1

|Kk−1|
∑

j∈Kk,i�=j BI
ij}

. (18)

The Silhouette index reflects the separateness of clusters as it takes values from
[-1,1], where negative values mean poor separateness and vice versa.

The whole algorithm can be initialized so that W0 is the outcome of the
BGSEP algorithm applied to X1 and the components W0X1 are grouped by
the full RFCM algorithm.

3 Experiments

We present two experiments evaluated by means of the BSS_EVAL toolbox [11]
using the true sources. The results are presented in the form of three criteria:
(i) Signal-to-Interference Ratio (SIR), (ii) Signal-to-Distortion Ratio (SDR), and
(iii) Signal-to-Artifact Ratio (SAR).

3.1 Fixed Source Positions

In this experiment, we examine the online algorithm in separating stationary
mixtures of speech signals. Positions of the sources and the microphones were
fixed. We compare it with the results of the original method from [5]. Hereinafter,
the proposed on-line method will be referred to as on-line T-ABCD, while the
original method will be named off-line T-ABCD1.

To this end, we use data from the publicly available sites of Hiroshi Sawada2.
The recordings of four sources using four microphones are considered. The orig-
inal signals are utterances of the length 7 s sampled by 8 kHz. The reverberation
time of the room is 130 ms. Omnidirectional microphones were used.

The on-line and off-line T-ABCD were both applied with L = 30. The other
parameters of the on-line method were set to P = 6144, T = 512, β2 = 0.95 and
α = 3. The separation results are evaluated block-by-block of the same size as
in the on-line method. Table 1 summarizes the results averaged over all blocks,
separated microphone responses, and sources.

On-line T-ABCD achieves better results in terms of SIR and SDR than the off-
line algorithm. It points out to the fact that the on-line method is able to adapt
the separating filters throughout the recordings respecting the nonstationarity
of sources. On the other hand, the time-invariant separation done by off-line
T-ABCD produces less artifacts as indicated by SAR.
1 The acronym “T-ABCD” comes from the original method as it is does Time-domain

Audio source Blind separation based on the Complete Decomposition of the obser-
vation space.

2 http://www.kecl.ntt.co.jp/icl/signal/sawada/

http://www.kecl.ntt.co.jp/icl/signal/sawada/
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Table 1. Results of separation of sources at fixed positions

SIR[dB] SDR[dB] SAR[dB]
on-line T-ABCD 8.43 1.58 4.41
off-line T-ABCD 6.25 1.09 5.38

Table 2. Results of separation of data simulating dynamic conditions

2 cm SIR[dB] SDR[dB] SAR[dB]
o. T-ABCD 10.39 3.87 6.16

Nesta 11.21 4.59 6.54

6 cm SIR[dB] SDR[dB] SAR[dB]
o. T-ABCD 8.77 1.44 4.45

Nesta 7.60 1.37 5.77

3.2 Moving Sources

In this experiment, we consider data given in the task “Determined convolutive
mixtures under dynamic conditions” (Audio Signal Separation) in the SiSEC
2010 evaluation campaign organized at this conference3. The data simulate dy-
namic conditions so that the maximum of two of six speakers located at fixed
positions around a stereo microphone array were active at a time. The separat-
ing algorithm applied to the data thus needs to adapt to active speakers. The
distances of microphones were 2 and 6 cm, and the sampling rate was 16 kHz.

We compare the proposed on-line T-ABCD with the frequency-domain BSS
method by Francesco Nesta et al [12,13]. The online method was applied with
L = 30, P = 6144, T = 512, β2 = 0.95 and α = 4. The Nesta’s method uses
FFT of the length 4096 samples with 75% overlap. As the method works off-line,
it was applied independently on disjoint blocks of 1 second where the maximum
of two sources were active.

The proposed method appears to be slightly inferior to the frequency-domain
method if the distance of the microphones is 2cm, but it achieves better results if
the distance is 6cm. We conclude that the on-line T-ABCD seems to outperform
the frequency-domain algorithm in cases of larger microphone distances, where
the spatial aliasing occurs.

3.3 Computational Demands

The experiments mentioned above were performed on a computer with single
core 2.6 Ghz processor with 2 GB RAM. The on-line T-ABCD was implemented
in Matlab environment. The computational demands of the algorithm depend on
the demixing filter length L. The mixture signals in Section 3.2 were 3 minutes,
29 seconds long, sampled by 16kHz. The on-line T-ABCD separation lasted 14
minutes, 36 seconds (L = 30). Although the implementation in Matlab may be
considered as rather slow and inefficient, this separation task can be performed
in real time when L = 10. Mixtures of two sources sampled by 8 kHz can be
separated in real-time when L = 18.
3 http://sisec.wiki.irisa.fr/

http://sisec.wiki.irisa.fr/
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4 Conclusions

We have proposed a method for blind separation of moving audio sources. The
algorithm applies the fast converging BGSEP algorithm and fuzzy clustering
RFCM algorithm. It is shown that presented time-domain method (with rather
short separating filters) is able to achieve results that are comparable to the
frequency domain BSS algorithm. The experiment with fixed sources suggests
the ability of the proposed method to adapt the separation to the nonstationarity
of the data as well.
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